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1

1.1  The Original Definition 
of Privileged Structures

In 1988, Ben Evans and his research team at Merck in 
their quest for potent, selective, orally effective chol-
ecystokinin (CCK) antagonists studied the prototype 
3‐(acylamino)‐5‐phenyl‐2H‐1,4‐benzodiazepines as 
therapeutic agents derived from the natural product 
lead asperlicin [1]. Evans recognized the core struc-
ture exhibited affinity toward central and peripheral 
benzodiazepine, opiate, CCK‐A, α‐adrenergic, seroto-
nin, muscarinic, and angiotensin I receptors. To quote 
verbatim from the words of Ben Evans in this seminal 
publication, which set in force the term “privileged 
structures” for the next three decades in two different 
paragraphs:

Thus, this single ring system, the 5‐phenyl‐1,4‐
benzodiazepine ring, provided ligands for a 
 surprisingly diverse collection of receptors, the 
natural ligands for which appear to bear little 
resemblance to one another or to the benzodiaz-
epines in question. The only obvious similarity is 
among the benzodiazepine structures themselves. 
These structures appear to contain common fea-
tures which facilitate binding to various proteina-
ceous receptor surfaces, perhaps through binding 
elements different from those employed for bind-
ing of the natural ligands.

Arguments have been constructed to suggest 
that structures with high affinity for a given recep-
tor may be more numerous, but at the same time 
more difficult to pinpoint than has heretofore been 
appreciated. The development of the compounds 
described here has illustrated an approach to that 
end having potentially wider utility, selective mod-
ification of “privileged structures” known to have 
provided ligands for diverse receptors in the past.

IUPAC has provided a structural definition of privileged 
structures—“Substructural feature which confers desir-
able (often drug‐like) properties on compounds contain-
ing that feature. Often consists of a semi‐rigid scaffold 
which is able to present multiple hydrophobic residues 
without undergoing hydrophobic collapse” [2].

1.2  The Role of Privileged Structures 
in the Drug Discovery Process

There are many steps in the drug discovery process to 
deliver a drug from initial chemical hits, lead optimization, 
chemical development and scale‐ups, clinical trials, and 
FDA approvals to the market. Nowadays, it takes an aver-
age of 12–15 years and almost 800 million to 1 billion dol-
lars of investment to deliver a single therapeutic drug to the 
market [3]. The lead optimization strategies are key steps 
for the medicinal chemists, and for this to occur, chemical 
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hits for specific targets need to be validated. There are 
many strategies that have been employed in the search for 
chemical hits such as high‐throughput screening of corpo-
rate compound libraries [4–6], virtual screening [7–10], 
and natural products as sources of new drugs [11–13]. 
Once the chemical hits are discovered, “medicinal chemis-
try” tools such as fragment‐based drug design [14, 15], 
analogue‐based drug design [16–18], Lipinski’s Rule of 
Five [19], bioisosteric replacements [20–22], “repurposing” 
old drugs [23–25], computer‐aided drug design (CADD) 
[7, 26–29], scaffold hopping [30, 31], selective optimization 
of side activities (SOSA approach) [32], and early ADME 
pharmacokinetic analyses [33, 34] are employed in the lead 
optimization stages of the drug discovery process.

The use of privileged structures is a viable strategy in 
the discovery of new medicines at the lead optimization 
stages of the drug discovery process. There are several 
published reviews which find that “privileged structures” 
are useful concepts for the rational design of new lead 
drug candidates [35–40]. These “privileged structures” 
tend to provide highly favorable characteristics in which 
alterations to the core structures lead to different levels of 
potency and specificity. Using these privileged structures 
as starting points for drug discovery, thousands of mole-
cules can be synthesized for a range of therapeutic biologi-
cal targets of interest. Furthermore, privileged structures 
typically exhibit drug‐like properties, which could lead to 
viable leads for further development. One must be careful 
and thoughtful in the drug discovery process that some-
times there are no true explanations why certain struc-
tures are privileged or why they are active against a 
particular group of targets. Though numerous repeated 
frameworks appear in biologically active molecules, no 
clear explanations exist for their privileged nature.

1.3  The Loose Definitions 
of “Privileged Structures”

Since the original definition of “privileged structures” 
coined by Evans in 1988, the definition has gone through 
several reiterations [39]. Privileged structures are liberally 
referred nowadays in many different terms such as 
 privileged scaffolds, chemotypes, molecular fragments, 

privileged structural motifs, and molecular scaffolds. 
There are no rigorous rules that define a structure as “priv-
ileged,” but typically they contain two or three ring systems 
that are connected by single bonds or by ring‐fusion. The 
structures that results from such arrangements are usually 
rigid frameworks that can show the appended functional-
ity in a well‐defined fashion that is desirable for molecular 
recognition of the biological target, and it is usually the 
variable nature of these functionalities that define the 
selectivity on a privileged core for a particular target.

1.4  Synthesis and Biological Activities 
of Carbocyclic and Heterocyclic 
Privileged Structures

Stockwell assembled one of the most comprehensive list-
ings of privileged scaffolds in tabular forms [38]. We also 
provide a detailed tabular presentation of the privileged 
scaffolds based on ring size and fused‐ring classifica-
tions. The series of tables are based on structures, the 
titles of the review article, and the reference numbers in 
each table under the appropriate listings. We hope it will 
be a useful source of inspiration for the drug discovery 
community of organic and medicinal chemists.

1.4.1 Synthesis and Biological Activities of Three‐ 
and Four‐Membered Ring Privileged Structures

There are only a few reviews published on the three‐ and 
four‐membered ring privileged structures and they are 
listed in Table 1.1.

1.4.2 Synthesis and Biological Activities 
of Five‐Membered Ring Privileged Structures

Numerous reviews on the synthesis and biological 
 activities of five‐membered ring privileged structures 
are outlined in Table 1.2.

Table 1.1 List of three‐ and four‐membered ring privileged structures reviews.

Structure Number Review title Reference

Phenylcyclopropylamines 1 An overview of phenylcyclopropylamine derivatives: Biochemical and biological 
significance and recent developments

[41]

Aziridines 2 Synthetic aziridines in medicinal chemistry: A mini‐review [42]
Oxetanes 3 Oxetanes: Recent advances in synthesis, reactivity, and medicinal chemistry [43]
Oxetanes 3 Oxetanes as versatile elements in drug discovery and synthesis [44]
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Table 1.2 List of five‐membered ring privileged structures reviews.

Structure Number Review title Reference

Pyrroles 4 Pyrrole: An emerging scaffold for construction of valuable therapeutic agents [45]
Pyrazolines 5 Synthesis and biological activity of chiral dihydropyrazole: Potential lead for drug 

design
[46]

Pyrazolines 5 Pyrazolines: A biological review [47]
Pyrazoles 6 Recent advances in bioactive pyrazoles [48]
Pyrazoles 6 The therapeutic voyage of pyrazole and its analogs: A review [49]
Pyrazoles 6 Pyrazoles as promising scaffold for the synthesis of anti‐inflammatory and/or 

antimicrobial agents: A review
[50]

Pyrazoles 6 Pyrazole derivatives as antitumor, anti‐inflammatory and antibacterial agents [51]
Pyrazoles 6 Recent progress on pyrazole scaffold‐based antimycobacterial agents [52]
2‐Imidazolines 7 Biologically active compounds based on the privileged 2‐imidazoline scaffold: The 

world beyond adrenergic/imidazoline receptor modulators
[53]

Imidazoles 8 Imidazoles as promising scaffolds for antibacterial activity: A review [54]
Imidazoles 8 Imidazoles as potential antifungal agents: A review [55]
Imidazoles 8 Comprehensive review in current developments of imidazole‐based medicinal 

chemistry
[56]

2‐Aminoimidazoles 9 2‐Aminoimidazoles in medicinal chemistry [57]
1,2,3‐Triazoles 10 Click chemistry for drug development and diverse chemical‐biology applications [58]
1,2,3‐Triazoles 10 1,2,3‐Triazole in heterocyclic chemistry, endowed with biological activity, through 

1,3‐dipolar cycloadditions
[59]

1,2,3‐Triazoles 10 In situ click chemistry: probing the binding landscapes of biological molecules [60]
Tetrazoles 11 Potential pharmacological activities of tetrazoles in the new millennium [61]
Tetrazoles 11 5‐Substituted‐1H‐tetrazoles as carboxylic acid isosteres: Medicinal chemistry and 

synthetic methods
[62]

Tetrazoles 11 Tetrazole as a core unit biological evaluation agent [63]
Isoxazolidines 12 Isozazolidine: A privileged scaffold for organic and medicinal chemistry [64]
Isoxazole 13 The isoxazole ring and its N‐oxide: A privileged core structure in neuropsychiatric 

therapeutics
[65]

Thiazoles 14 Recent applications of 1,3‐thiazole core structures in the identification of new lead 
compounds and drug discovery

[66]

Thiazoles 14 Bioactive thiazole and benzothiazole derivatives [67]
Oxadiazoles 15, 16 Recent updates on biological activities of oxadiazoles [68]
Oxadiazoles 15, 16 Synthesis and biological activities of oxadiazole derivatives: A review [69]
1,2,4‐Oxadiazoles 15 [1,2,4]‐Oxadiazoles: Synthesis and biological applications [70]

(Continued)
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1.4.3 Synthesis and Biological Activities 
of Six‐Membered Ring Privileged Structures

Plenty of reviews are available for the synthesis and 
biological activities of six‐membered ring privileged 
structures listed in Table 1.3.

1.4.4 Synthesis and Biological Activities 
of Bicyclic 5/5 and 6/5 Ring Privileged Structures

There is no shortage of synthesis and biological activities 
of bicyclic 5/5 and 6/5 ring privileged structures reviews 
listed in Table 1.4.

1.4.5 Synthesis and Biological Activities 
of Bicyclic 6/6 and 6/7 Ring Privileged Structures

Again, there is no shortage of synthesis and biological 
activities of the popular bicyclic 6/6 ring privileged 
structures reviews listed in Table 1.5.

1.4.6 Synthesis and Biological Activities  
of Tricyclic and Tetracyclic Ring Privileged  
Structures

A general review on the use of tricyclic structures in 
medicinal chemistry appeared a decade ago [162]. 
Table 1.6 outlines recent reviews on the use of specific 
tricyclic and tetracyclic structures employed in medici-
nal chemistry programs.

1.5  Combinatorial Libraries 
of “Privileged Structures”

If we entertained the idea of “privileged structures” as 
core structures for low molecular weight compounds, 
analogous to the fragment‐based method of drug dis-
covery, combinatorial chemistry protocols can be 
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Structure Number Review title Reference

1,3,4‐Oxadiazoles 16 1,3,4‐Oxiadiazoles: An emerging scaffold to target growth factors, enzymes and 
kinases as anticancer agents

[71]

1,3,4‐Oxadiazoles 16 1,3,4‐Oxadiazole: A privileged structure in antiviral agents [72]
1,3,4‐Oxadiazoles 16 1,3,4‐Oxadiazole: A biologically active scaffold [73]
1,3,4‐Oxadiazoles 16 1,3,4‐Oxadiazole derivatives as potential biological agents [74]
1,3,4‐Oxadiazoles 16 Oxadiazoles as privileged motifs for promising anticancer leads: Recent advances 

and future prospects
[75]

1,3,4‐Thiadiazoles 17 Biological and pharmacological activities of 1,3,4‐thiadiazole based compounds [76]
1,3,4‐Thiadiazoles 17 Thiadiazole–a promising structure in medicinal chemistry [77]
2,4‐Thiazolidinediones 18 Therapeutic journey of 2,4‐thiazolidinediones as a versatile scaffold: An insight 

into structure–activity relationship
[78]

Cyclopentenediones 19 Chemical properties and biological activities of cyclopentenediones [79]

Table 1.2 (Continued)
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Table 1.3 List of six‐membered ring privileged structures reviews.

Structure Number Review title Reference

Chalcones 20 Anti‐cancer chalcones: Structural and molecular target perspectives [80]
Chalcones 20 Exploring pharmacological significance of chalcone scaffold: A review [81]
Chalcones 20 Chalcone: A privileged structure in medicinal chemistry [82]
Benzoquinones 21 Perspectives on medicinal properties of benzoquinone compounds [83]
1,4‐Dihydropyridines 22 1,4‐Dihydropyridines: A class of pharmacologically important molecules [84]
1,4‐Dihydropyridines 22 1,4‐Dihydropyridines as calcium channel ligands and privileged structures [85]
1,4‐Dihydropyridines 22 Dihydropyridines: Evaluation of their current and future pharmacological 

applications
[86]

Piperidin‐4‐ones 23 Piperidin‐4‐one: The potential pharmacophore [87]
Piperazines 24 Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents [88]
Piperazines 24 An evolving role of piperazine moieties in drug design and discovery [89]
Dihydropyrimidinones 25 Recent advances in the pharmacology of dihydropyrimidinones [90]
Dihydropyrimidinones 25 Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review [91]
2,5‐Diketopiperazines 26 2,5‐Diketopiperazines as neuroprotective agents [92]
Pyridazinones 27 The therapeutic journey of pyridazinone [93]
Uracils 28 In search of uracil derivatives as bioactive agents. Uracils and fused uracils: 

Synthesis, biological activity and applications
[94]

Pyrazines 29 Unequivocal role of pyrazine ring in medicinally important compounds: A review [95]
1,2,3‐Triazines 30 1,2,3‐Triazine scaffold as a potent biologically active moiety: A mini‐review [96]
1,2,3‐Triazines 30 Triazine as a promising scaffold for its versatile biological behavior [97]
1,2,4‐Triazines 31 1,2,4-Triazine analogs as novel class of therapeutic agents [98]
1,3,5‐Triazines 32 Medicinal chemistry discoveries among 1,3,5‐triazines: recent advances (2000–

2013) as antimicrobial, anti‐TB and antimalarials
[99]

1,3,5‐Triazines 32 1,3,5‐Triazine‐based analogues of purines: From isosteres to privileged scaffolds in 
medicinal chemistry

[100]
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Table 1.4 List of bicyclic 5/5 and 6/5 ring privileged structures reviews.

Structure Number Review title Reference

Pyrrolizines 33 An integrated overview on pyrrolizines as potential anti‐inflammatory, 
analgesic and antipyretic agents

[101]

Pyrroloisoxazoles 34 Pyrroloisoxazole: A key molecule with diverse biological actions [102]

Indoles 35 From nature to drug discovery: The indole scaffold as a “privileged structure” [103]

Indoles 35 Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view [104]

Indoles/indazoles 35/40 Chemistry and biology of indoles and indazoles [105]

3‐Acetylindoles 36 3‐Acetylindoles: Synthesis, reactions and biological activities [106]

Oxindoles 37 Oxindole: A chemical prism carrying plethora of therapeutic benefits [107]

Oxindoles 37 Indolinones as promising scaffold as kinase inhibitors [108]

Spirooxindoles 38 Spiroxoindoles: Promising scaffolds for anticancer agents [109]

Phthalimides 39 Recent advances in the chemistry of phthalimide analogues and their 
therapeutic potential

[110]

Benzimidazoles 41 Comprehensive review in current developments of benzimidazole‐based 
medicinal chemistry

[111]

Benzimidazoles 41 Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design 
in therapeutic medicine

[112]

Benzimidazoles 41 Benzimidazoles: An ideal privileged drug scaffold for the design of 
multitargeted anti‐inflammatory ligands

[113]

Imidazo[1,2‐a]pyridines 42 Recent progress in the pharmacology of imidazo[1,2‐a]pyridines [114]

Imidazo[1,2‐a]pyridines 42 Imidazo[1,2‐a]pyridine scaffold as prospective therapeutic agents [115]

Benzotriazoles 43 Benzotriazole: An overview on its versatile biological behavior [116]

Benzofurans 44 Bioactive benzofuran derivatives: An insight on lead developments, 
radioligands and advances of the last decade

[117]

Benzofurans 44 Bioactive benzofuran derivates: A review [118]

Benzofurans 44 Biological and medicinal significance of benzofuran [119]

Benzoxazoles 45 Recent advances in the development of pharmacologically active compounds 
that contain a benzoxazole scaffold

[120]

Benzoxazoles 45 Benzoxazoles and oxazolopyridines in medicinal chemistry studies [121]

2(3H)‐Benzoxazolones 46 2(3H)‐Benzoxazolone and bioisosteres as “privileged scaffold” in the design of 
pharmacological probes

[122]

Benzothiazoles 47 Recent advances in the chemistry and biology of benzothiazoles [123]

2‐Arylbenzothiazoles 48 2‐Arylbenzothiazole as a privileged scaffold in drug discovery [124]

Pyrazolo[1,5‐a]pyrimidines 49 An insight on synthetic and medicinal aspects of pyrazolo[1,5‐a]pyrimidine 
scaffold

[125]

Pyrazolo[3,4‐d]pyrimidines 50 4‐Amino‐substituted pyrazolo[4,3‐d]pyrimidines: Synthesis and biological 
properties

[126]

Pyrazolo[3,4‐d]pyrimidines 50 Biologically driven synthesis of pyrazolo[3,4‐d]pyrimidines as protein kinase 
inhibitors: An old scaffold as a new tool for medicinal chemistry and chemical 
biology studies

[127]

8‐Azapurines 51 8‐Azapurine nucleus: A versatile scaffold for different targets [128]

Thalidomides 52 Thialidomide as a multi‐template for development of biologically active 
compounds

[129]

Thiazolo[4,5‐d]pyrimidines 53 Thiazolo[4,5‐d]pyrimidines as a privileged scaffold in drug discovery [130]

Thieno[2,3‐d]
pyrimidin‐4‐ones

54 Recent developments regarding the use of thieno[2,3‐d]pyrimidin‐4‐one 
derivatives in medicinal chemistry, with a focus on their synthesis and 
anticancer properties

[131]

Tetrahydrothieno‐pyridines 55 Synthesis and biological activity of substituted‐4,5,6,7‐
tetrahydrothienopyridines: A review

[132]
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established for privileged structures, with their inher-
ent affinity for diverse biological receptors, represent 
an ideal source of core scaffolds and capping frag-
ments for the design and synthesis of combinatorial 
libraries to enable numerous targets to be processed 
simultaneously across different therapeutic areas 

[174]. The majority of privileged structures contain 
multiple sites for diversification by chemical modifi-
cations to achieve a huge number of possible pharma-
cological profiles.

Dolle published very comprehensive surveys of combi-
natorial libraries annually for over a decade [175–187]. 
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Table 1.5 List of bicyclic 6/6 and 6/7 ring privileged structures reviews.

Structure Number Review title Reference

Coumarins 56 Biological importance of structurally diversified chromenes [133]
Coumarins 56 Current developments of coumarin‐based anti‐cancer agents in medicinal chemistry [134]
Coumarins 56 Coumarin: A privileged scaffold for the design and development of 

antineurodegenerative agents
[135]

Coumarins 56 Benzocoumarins: Isolation, synthesis, and biological activities [136]
Isocoumarins 57 Isocoumarins, miraculous natural products blessed with diverse pharmacological 

activities
[137]

Chromones 58 Chromone: A valid scaffold in medicinal chemistry [138]
Chroman‐4‐ones 59 Recent advances of chroman‐4‐one derivatives: Synthetic approaches and 

bioactivities
[139]

2‐Styrylchromones 60 Biological activities of 2‐styrylchromones [140]
2‐Styrylchromones 60 An overview of 2‐styrylchromones: Natural occurrence, synthesis, reactivity and 

biological properties
[141]

Quinolines 61 The concept of privileged structures in rational drug design: Focus on acridine and 
quinoline scaffolds in neurodegenerative and protozoan diseases

[142]

Quinolines 61 Biological activities of quinoline derivatives [143]
Quinolines 61 Quinoline as a privileged scaffold in cancer drug discovery [144]
Quinolines 61 A review on anticancer potential of bioactive heterocycle quinolone [145]
8‐Hydroxyquinolines 62 8‐Hydroxyquinolines in medicinal chemistry: A structural perspective [146]
8‐Hydroxyquinolines 62 8‐Hydroxyquinoline: A privileged structure with a broad‐ranging pharmacological 

potential
[147]

Quinoxalines 63 Quinoxaline, its derivatives and applications: A state of the art review [148]
Quinoxalines 63 Quinoxaline‐based scaffolds targeting tyrosine kinases and their potential anticancer 

activity
[149]

Quinazolines 64 Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal 
chemistry: An update on the development of synthetic methods and 
pharmacological diversification

[150]

4‐Aminoquinazolines 65 4‐Aminoquinazoline analogs: A novel class of anticancer agents [151]
1,8‐Naphthyridines 66 1,8‐Naphthyridine derivatives: A review of multiple biological activities [152]
4‐Quinolone‐3‐
carboxylic acids

67 The 4‐quinolone‐3‐carboxylic acid motif as a multivalent scaffold in medicinal 
chemistry

[153]

Dihydroquinazolinones 68 Synthetic strategy with representation on mechanistic pathway for the therapeutic 
applications of dihydroquinazolinones

[154]

Phthalazinones 69 Phthalazin‐1(2H)‐one as a remarkable scaffold in drug discovery [155]
Dihydrobenzo[1,4]‐
oxathiines

70 Dihydrobenzo[1,4]oxathiine: A multi‐potent pharmacophoric heterocyclic nucleus [156]

1,4‐Benzothiazines 71 Functionalized 1,4‐benzothiazine: A versatile scaffold with diverse biological  
properties

[157]

Pyridopyrimidines 72 Recent advances in the chemistry and biology of pyridopyrimidines [158]
1,4‐Benzodiazepine 73 Recent development in [1,4]benzodiazepines as potent anticancer agents:  

A review
[159]

1,4‐Benzodiazepine 73 Benzo‐ and thienobenzodiazepines: Multi‐target drugs for CNS disorders [160]
1,5‐Benzothiazepine 74 1,5‐Benzothiazepine, a versatile pharmacophore: A review [161]
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Many of the information in the annual surveys show 
original library syntheses based on privileged structures. 
Table  1.7 shows combinatorial synthetic reviews on 
 privileged structures.

1.6  Scope of this Monograph

The author’s inspiration for this monograph occurred 
years ago when three pivotal reviews in the literature 
appeared on the topic of privileged structures in drug dis-
covery. Stockwell’s [38] monumental and comprehensive 
tables of privileged scaffolds for library design and Fraga’s 

[37], DeSimone’s [39], and Costantino’s [40] reviews on 
selected privileged structures case studies spurred the 
author’s motivation to pursue a monograph on this topic 
of “privileged structures.” During the preparation of this 
monograph, Bräse edited a book titled Privileged Scaffolds 
in Medicinal Chemistry – Design, Synthesis, Evaluation in 
2016 from different viewpoints [197]. Chapters included 
β‐lactams, (benz)imidazoles, pyrazoles, quinolones, iso-
quinolines, rhodanines, coumarins, xanthones, spirocy-
cles, and cyclic peptides as privileged scaffolds in 
medicinal chemistry. Other key chapters included hete-
rocycles containing nitrogen and sulfur as potent biologi-
cally active scaffolds, thiirane class of gelatinase inhibitors 

Table 1.6 List of tricyclic and tetracyclic ring privileged structures reviews.

Structure Number Review title Reference

Acridines 75 The concept of privileged structures in rational drug design: Focus on acridine and 
quinolone scaffolds in neurodegenerative and protozoan diseases

[142]

Xanthones 76 Recent insight into the biological activities of synthetic xanthone derivatives [163]
Carbazoles 77 Biological potential of carbazole derivatives [164]
Pyrrolo[1,2‐a]indoles 78 Synthesis and some biological properties of pyrrolo[1,2‐a]indoles [165]
Pyrazoloquinolines 79 An overview on synthetic methodologies and biological activities of 

pyrazoloquinolines
[166]

Pyrazoloquinazolines 80 Pyrazoloquinazolines: Synthetic strategies and bioactivities [167]
Pyrroloquinazolines 81 The chemistry and pharmacology of privileged pyrroloquinazolines [168]
Pyrroloquinoxalines 81 Recent progress in biological activities and synthetic methodologies of 

pyrroloquinoxalines
[169]

Imidazoquinolines 82 Imidazoquinolines: Recent developments in anticancer activity [170]
Pyrrolobenzodiazepines 83 Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines [171]
Anthraquinones 84 Anthraquinones as pharmacological tools and drugs [172]
6H‐indolo[2,3‐b]
quinoxalines

85 6H‐indolo[2,3‐b]quinoxalines: DNA and protein interacting scaffold for 
pharmacological studies

[173]

Table 1.7 Combinatorial synthesis of privileged structures reviews.

Review title Reference

Recent advances in the solid‐phase combinatorial synthetic strategies for the quinoxaline, quinazoline and benzimidazole 
based privileged structures

[188]

The combinatorial synthesis of bicyclic privileged structures or privileged substructures [189]
Privileged scaffolds for library design and drug discovery [38]
Recent advances in the solid‐phase combinatorial synthetic strategies for the benzodiazepine based privileged structures [190]
Exploring privileged structures: the combinatorial synthesis of cyclic peptides [191]
Libraries from natural product‐like scaffolds [192]
Privileged structure‐based combinatorial libraries targeting G protein‐coupled receptors [193]
Nitrogen containing privileged structures and their solid phase combinatorial synthesis [194]
Design, synthesis, and evaluation of small‐molecule libraries [195]
Advances in solution‐ and solid‐phase synthesis toward the generation of natural product‐like libraries [196]
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as a privileged template that crosses the blood–brain bar-
rier, natural product scaffolds of value in medicinal chem-
istry, and ergot  alkaloids. We will keep the nomenclature 
of “privileged structures” for the rest of the book !!!

The author has selected a dozen privileged struc-
tures such as the benzodiazepines, 1,4‐dihydropyri-
dines, biphenyls, 4‐arylpiperidines, spiropiperidines,  
2‐aminopyrimidines, 2‐aminothiazoles, 2‐arylindoles, 
tetrahydroisoquinolines, 2,2‐dimethylbenzopyrans, 

hydroxamates, and imidazopyridines to showcase the 
use of these structures in drug discovery programs. 
Each chapter will have a listing of the FDA‐approved 
marketed drug with that “privileged structure,” fol-
lowed by detailed sections of medicinal chemistry 
case studies across multiple therapeutic areas and 
finally comprehensive sections on the syntheses of the 
structures employing classical and state‐of‐the‐art 
organic chemistry reactions.
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2.1  Introduction

Benzodiazepine (BDZ) privileged structures are repre‑
sented as the 1,4‐benzodiazepene or the 1,5‐benzodiaz‑
epine cores and it should be fitting that we start with 
this class of structures as it is where Evans and his 
research team coined the original term of “privileged 
structures” in 1988 when they studied potent, selective, 
orally effective 1,4‐ benzodiazepine (CCK antagonists as 
therapeutic agents from the natural product lead asper‑
licin [1]. Evans recognized the 1,4‐benzodiazepine core 
structures exhibited affinity toward central and periph‑
eral BDZ, opiate, CCK‐A, α‐adrenergic, serotonin, mus‑
carinic, and angiotensin I receptors. As mentioned in 
the Chapter 1, each chapter will have a short introduc‑
tion, followed by a list of marketed drugs containing the 
“privileged structures,” then medicinal chemistry case 
studies, and the classical and state‐of‐the‐art chemical 
syntheses of the “privileged structures” will round out 
the rest of the chapter.
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2.2  Marketed BDZ Drugs

Many of the BDZ drugs that have been marketed over 
the last half century are of central nervous system thera‑
peutic value. The marketed drugs are organized in the 
following sections in relation to their 1,4‐ or 1,5‐benzo‑
diazepine systems.

2.2.1 1,4‐Benzodiazepine Marketed Drugs

Diazepam, marketed as ValiumTM by Roche, is a BDZ with 
anticonvulsant, anxiolytic, sedative, muscle relaxant, and 
amnesic properties and has a long duration of action [2, 3]. 
It is used in the treatment of severe anxiety disorders, as a 
hypnotic in the short‐term management of insomnia, as 
a sedative and premedicant, as an anticonvulsant, and in 
the management of alcohol withdrawal syndrome.

Temazepam, marketed as RestorilTM by Mallinckrodt, 
is a 3‐hydroxy analog of diazepam and is one of diaze‑
pam’s primary active metabolites and is approved for the 
short‐term use of insomnia [4].

Clonazepam, sold under the trade name KlonopinTM, 
is an anticonvulsant used for several types of seizures, 
including myotonic or atonic seizures, photosensitive 
epilepsy, and absence seizures, although tolerance may 
develop [5, 6]. It is seldom effective in generalized tonic– 
clonic or partial seizures [4].
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Lorazepam, marketed as AtivanTM by Actavis, is a BDZ 
used to treat anxiety disorders or anxiety associated with 
depression [7, 8]. Clorazepate, sold as TranxeneTM, is a 
BDZ derivative that has anxiolytic, anticonvulsant, seda‑
tive, hypnotic, and skeletal muscle relaxant properties [9, 
10]. Flurazepam, marketed as DalmaneTM, is BDZ deriv‑
ative which also possesses anxiolytic, anticonvulsant, 
sedative, and skeletal muscle relaxant properties [11]. 
Flurazepam produces a metabolite with a very long half‐
life for 40–250 h, which may stay in the bloodstream for 
up to 4 days and thus is used in patients who have diffi‑
culty in maintaining sleep.

2.2.2 1,5‐Benzodiazepine Marketed Drugs

Clobazam, marketed under the brand name OnfiTM, is a 
BDZ drug with anxiolytic properties since 1975 and as an 
anticonvulsant since 1984 [12, 13]. Clobazam was 
approved in 2011 for the treatment of seizures and for 
adjunctive therapy for epilepsy in patients who have not 
responded to first‐line drugs and in children who are 
refractory to first‐line drugs [14].

2.2.3 Linearly Fused BDZ Marketed Drugs

Clozapine, marketed by Novartis as ClozarilTM, is an 
atypical antipsychotic medication used in the treat‑
ment of schizophrenia and is also used off‐label in the 
treatment of bipolar disorder [15–17]. Clozapine is 
classified as an atypical antipsychotic drug because of 
its profile of binding to serotonin as well as dopamine 
receptors. Clozapine is usually used as a last resort in 
patients that have not responded to other antipsy‑
chotic treatments due to its danger of causing agranu‑
locytosis as well as the costs of having to have blood 
tests continually during treatment. It is, however, one 
of the very effective antipsychotic treatment choices.
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Pirenzepine, sold as GastrozepinTM by Valley Forge 
Pharmaceuticals, is a muscarinic M1 selective receptor 
antagonist used in the treatment of peptic ulcers by 
reducing gastric acid secretion and reducing muscle 
spasm [18, 19]. It promotes the healing of duodenal 
ulcers and due to its cytoprotective actions it is beneficial 
in the prevention of duodenal ulcer recurrence.

Olanzapine, marketed under the trade name ZyprexaTM 
by Lilly, is an atypical antipsychotic, approved by the FDA 
for the treatment of schizophrenia and bipolar disorder 
[20–22]. Olanzapine is structurally similar to clozapine, 
but it is classified as a thienobenzodiazepine. Recently, 
the radiosynthesis and lipophilicity of [11C]‐olanzapine as 
a new potential PET 5‐HT2 and D2 receptor radioligand 
were reported [23]. An interesting multistep continuous 
flow preparation of olanzapine with high‐frequency 
inductive heating [IH(hf)] was disclosed [24].

2.2.4 Angularly Fused‐1,4‐Benzodiazepine 
Marketed Drugs

Estazolam, marketed under the brand name ProSomTM, is 
a BDZ derivative drug developed by Upjohn in the 1970s, 
which possesses anxiolytic, anticonvulsant, sedative, and 
skeletal muscle relaxant properties [25]. Estazolam is an 
intermediate‐acting oral BDZ and it is commonly pre‑
scribed for short‐term treatment of insomnia [26].

Alprazolam, sold as XanaxTM by Pharmacia and Upjohn, 
is a BDZ class of psychoactive drugs with anxiolytic, seda‑
tive, hypnotic, skeletal muscle relaxant, anticonvulsant, 
and amnestic properties [27–29]. Alprazolam, like other 
BDZs, binds to specific sites on the GABAA receptor. 
Alprazolam is commonly used and FDA approved for the 
medical treatment of panic disorder and anxiety disor‑
ders, such as generalized anxiety disorder (GAD) or social 
anxiety disorder (SAD).

Triazolam, marketed under the brand name HalcionTM, 
is a BDZ drug which possesses pharmacological proper‑
ties similar to that of other BDZs, but it is generally only 
used as a sedative to treat severe insomnia [30]. In addi‑
tion to the hypnotic properties triazolam possesses, 

amnesic, anxiolytic, sedative, anticonvulsant, and muscle 
relaxant properties are also present. Due to its short half‐
life, triazolam is not effective for patients that suffer from 
frequent awakenings or early wakening.

Adinazolam, sold as DeracynTM by Upjohn Company, 
is triazolobenzodiazpine, which possesses anxiolytic, 
anticonvulsant, sedative, and antidepressant properties 
[31, 32]. Adinazolam was developed to enhance the anti‑
depressant properties of alprazolam.

Midazolam, marketed under the trade name VersedTM, 
is a short‐acting drug in the BDZ class developed by 
Hoffmann‐La Roche in the 1970s [33–35]. The drug is 
used for the treatment of acute seizures, moderate‐to‐
severe insomnia, and for inducing sedation and amnesia 
before medical procedures. It possesses profoundly 
potent anxiolytic, amnestic, hypnotic, anticonvulsant, 
skeletal muscle relaxant, and sedative properties. 
Midazolam has a fast recovery time and is the most com‑
monly used BDZ as a premedication for sedation; less 
commonly it is used for induction and maintenance of 
anesthesia.

2.3  Medicinal Chemistry Case Studies

The 1,4‐benzodiazepine scaffold is of particular interest 
in drug design due to a balanced ensemble of beneficial 
physicochemical properties, including a semi‐rigid and 
compact diazepine ring with spatial placements of sev‑
eral substituents, combined with low number of rotata‑
ble bonds, hydrogen bond donors and acceptors, and 
intermediate lipophilicity [36]. The BDZs no doubt has 
its very first applications as central system indications 
but now has expanded into all therapeutic areas in the 
last decade or two.

2.3.1 Cardiovascular Applications

Arginine vasopressin (AVP) is a cyclic non‐peptide that 
exerts its action by binding to three membrane‐bound 
G‐protein–coupled receptor (GCPR) subtypes, V1a, V2, 
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and V3 [37–40]. The V2 receptor is primarily located in 
the principal cells of the renal collecting ducts and is 
involved in such important physiological responses such 
as reabsorption of water in the kidneys and mediates 
AVP‐induced antidiuresis to preserve normal plasma 
osmolality. Selective non‐peptide vasopressin V2 recep‑
tor antagonists have received attention for their poten‑
tial use in treating diseases of excessive renal 
reabsorption of water [41]. Johnson and Johnson 
Pharmaceutical researchers reported non‐peptide vaso‑
pression V2 receptor antagonists based on oxazino‐ and 

thiazino[1,4]benzodiazepine templates 1 [42] and 
Japanese workers disclosed pyrrolo[2,1‐c][1,4]benzodi‑
azepine (PBD) V2 receptor antagonists 2 [43]. The two 
noted compounds of type 1 showed pronounced 
aquaretic activity in rats on oral administration.

Vasopressin V2 receptor selective agonists are a class of 
antidiuretics with the potential to be useful in the treat‑
ment of diseases characterized by the production of large 
volumes of diluted urine or inadequate levels of AVP, 
such as central and nephrogenic diabetes insipidus, enu‑
resis, and nocturia [44]. Researchers at Wyeth reported 
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